COMPOSTING

Brought to you by: Northeast Recycling Council Compost Association of Vermont Vermont Community Garden Network

Community Composting

- Often volunteer run; some operated by nonprofit organizations or farms
- Produces compost for local use
- Promotes community connections
- Provides an essential role in the evolution of food scrap diversion
- Range of sizes 10 sq. ft. 20,000 sq. ft.

Vermont Regulations

• Exemptions: $\sqrt{100 \text{ yds}^3/\text{year feedstocks}}$ < < 1000 yds³/year food processing residuals on farms $\sqrt{3000 \text{ yds}^3/\text{year}}$ leaf and yard debris Larger amounts: small, medium and large operations

FOOD SCR

OR•GAN•ICS

Rescue

food Composting scraps

Acceptable Materials

- Vegetable food scraps, peels
- Fruit food scraps, peels
- Nuts & nut shells
- Dairy, cheese
- Coffee grounds/filters & tea bags
- Leaves, garden trimmings
- Napkins, paper towels
- Sawdust
- Livestock bedding/manure
- Straw

Food Scraps Sourcing

- Community gardeners
- Schools
- Businesses
- Nonprofits
- Churches
- Community

Start collecting small
Start collecting small
volumes & grow it!
Year-round, consistent
supply of feedstocks!

Carbon Sourcing

- Wood workers, town, utility crews, landscapers – sawdust, chips
- Neighborhood, landscapers leaves
- Farmers livestock bedding

•Year-round, consistent •Year-round, consistent supply of feedstocks! • 2-3 times volume than • 2-3 times volume than • 600 scraps • Keep Dry

Onsite Collection Containers

Food scraps

 5 gallon buckets
 Tubs
 5-20 gallon cans or carts

 Sawdust storage

Community Garden Collection

Community Garden Collection

Elm Street

School & Business Collection

Home & Office Collection



Image Cr. StopWaste.org

COLLECTION MONITORING

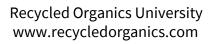
- Set designated days & times for food scrap collection/drop off
 - Match collection/drop-off with compost pile building
- Educate participants about feedstocks
 Onsite orientation & clear signage

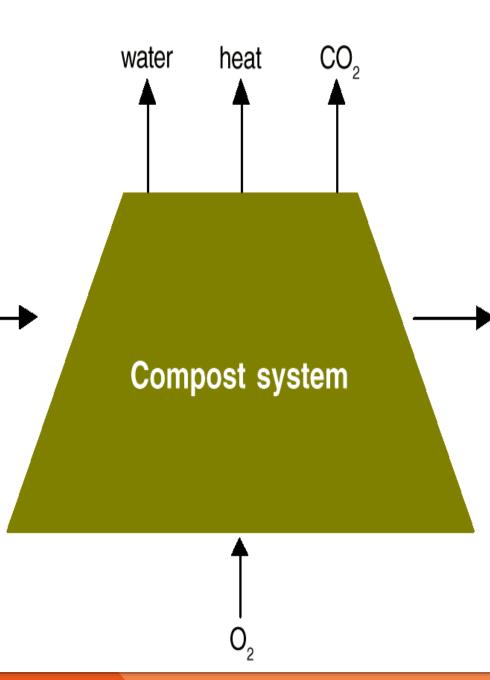
What is Compost?

Compost is a value-added product. Composting converts residue material into an easy-to-handle, humus-like product, rich in organic matter & organisms.

Composting

 Controlled, aerobic biological process Results in the decomposition of organics Decomposers: Micro & Macroorganisms ✓ Digest organic residues for food & energy Speed up the process by creating heat

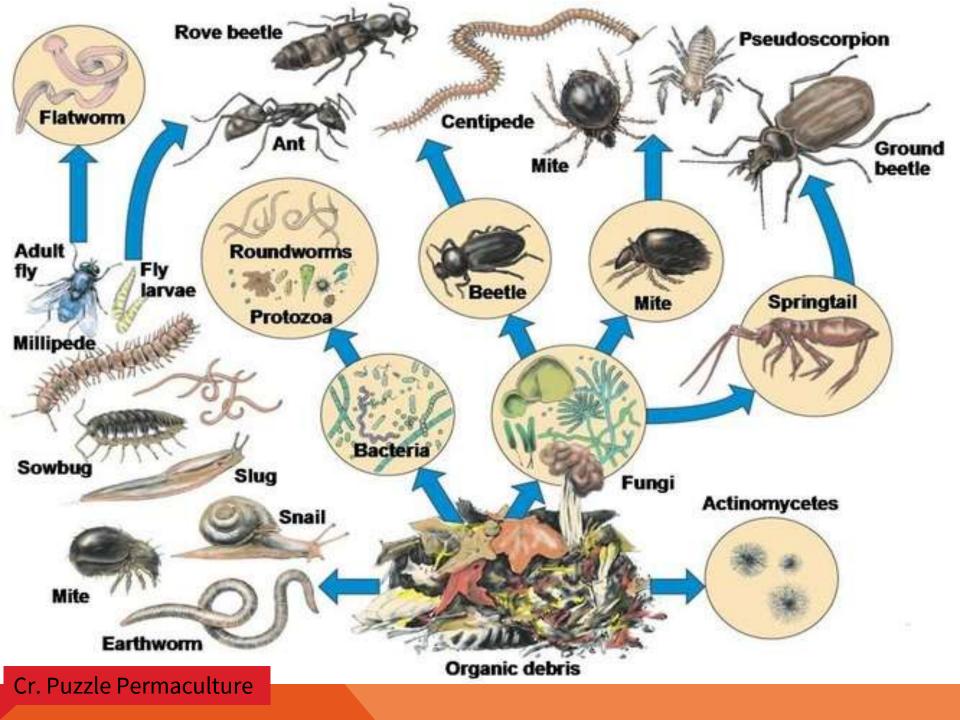

Raw materials


Organic matter including carbon, chemical energy, protein and nitrogen

Mineral nutrients including nitrogen and other elements

Water

Microorganisms



Process

Product

Finished compost containing organic matter - including carbon, chemical energy, nitrogen, protein, humus, mineral nutrients, water and microorgansims

Healthy biological activity is essential to successful composting—setting up the right environment and conditions is fundamental to the process

Composting Science Basics

Aeration ✓ Oxygen concentrations: 10-14+%. Carbon to Nitrogen (C:N) Ratio $\sqrt{20:1-60:1}$ ✓ Preferred 30:1-50:1 • Moisture: 40 to 65 percent Like a damp sponge

Science, cont.

- Optimum pH range
 √ 5.5 to 8
- Temperature 90°-150°F (32°-66°C)
 \Process to Further Reduce Pathogens \131°F for 3-15 days (f of system)

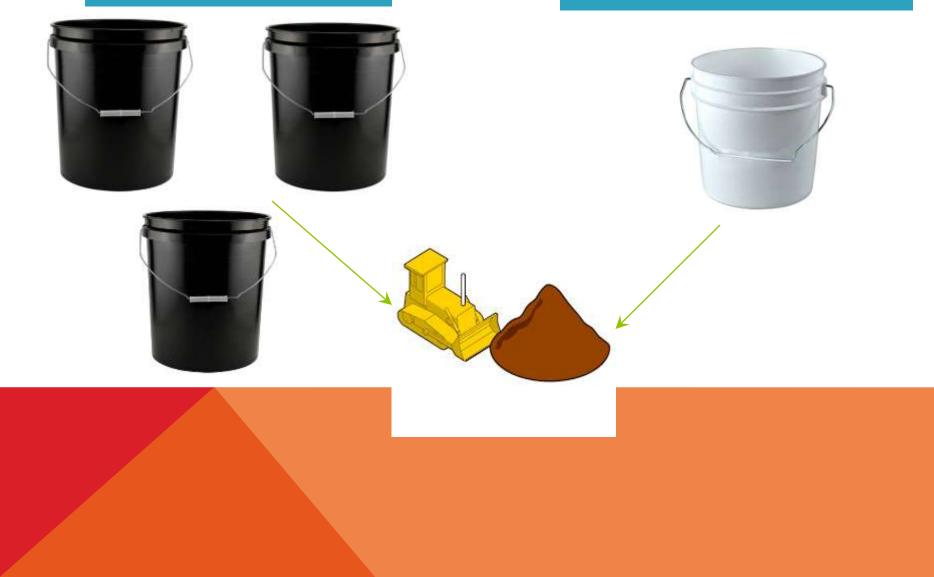
Basic Recipe

2-3 Parts Carbon - "Brown" materials

- Woody, dry materials: wood shavings, leaves, soiled/shredded paper, straw, animal bedding
- Bulky materials, including branches should be chopped or shredded

1 Part Nitrogen - "Green" materials

 Fresh, "wet" materials, such as kitchen scraps, grass clippings, garden trimmings (no weeds), manures


Keep it small!

✓ Mowing, grinding, chipping, or shredding

??? Does your site have enough of the right mix?

High Carbon 2-3 volumes

High Nitrogen 1 volume

Recipe, Cont.

- A little soil, finished compost, or horse manure
- Moisture

Just a little, like a damp sponge
 Leave lid or cover off during rain
 Required to keep microorganisms alive & active

Recipe Tips for Jora/Tumblers

- Start with equal parts C to N or 2 parts C
 to 1 part N
- Adjust to speed decomposition
 Temperature
 Moisture level
 Active decomposition

Recipe Tips for Bins/Piles

- Carbon keep with the 30:1 C:N
- Bulking agents wood shavings, chips
 ✓ Provide porosity
 ✓ Pile stabilization
 ✓ Aid air flow

Sample Carbon and Nitrogen Ratios of Various Organics

Carbon Sources	Carbon:Nitrogen Ratio
Yard wastes	50 - 90:1
Straw/hay	50 - 80:1
Wood chips/sawdust	250 - 500:1
Nitrogen Sources	Carbon:Nitrogen Ratio
Vegetable scraps	10 – 30:1
Fruit scraps	10 – 30:1
Grass & garden gleanings	10 – 20:1
Chicken manure	10 – 25:1
Cow manure	20 – 30:1
Horse manure	25 – 30:1

Adapted from Robert Rynk, "On-Farm Composting Handbook," Natural Resource, Agriculture, and Engineering Service, 1992.

General TIPS

Mix ingredients together to create a better balance – homogeneous mix • Adding food scraps No more than 20%, more okay in tumblers/Jora ✓ Balance C:N ratio, moisture, bulk density Observation, temperature, look & feel of compost, trial & error

Quality Begins With The Generator

Image Cr.: Permies.com

Image Cr.: David Hurd

NORTHEAST RECYCLING COUNCIL, INC. WWW.NERC.ORG

BE ONE WITH YOUR COMPOST

Hot Compost

Temperature should rise to at least 90-120° F
✓ 130°F for PFRP
✓ Turn/rotate materials to achieve heat

> 1-2 times per week, as needed

"Hot" Compost Method

Enclosed containers
Insulate in winter
Use larger containers or tumblers
Covered piles – insulate
Proper "mix" of feedstocks



System Considerations What's Right for your Site?

Photos: upper left: Bakersfield Elementary Middle School, Bakersfield, VT; lower left: Red Hook Community Farm, Brooklyn, NY (photo credit NYC Master Composter Manual, DSNY); upper right: Charlotte Central School, Charlotte, VT; lower left: La Plaza Cultural, Manhattan, NY

System Considerations: Materials

Photos: upper left: La Plaza Cultural, Manhattan, NY; upper right: Cornwall School, Cornwall, VT; lower right: Thetford Elementary School, Thetford, VT

Assess Volume of Materials:

Community need People power Site capacity Permit limits > 100cy/yr. feedstock Resources available

Home Composting

Tumblers

Compost Bins

Aerobin & Jora

3-BIN SYSTEM

Photo Cr.: George McDonald, Maine DEP

Four Bin System

Windrows


In-Vessel

Aerated Static Piles

Black Dirt Farm Devine Gardens

Grow Compost Vermont

Green Mountain Compost

Onondaga County Resource Recovery Agency

vs. \$84/ton MSW

Costs & Inputs to Build System

Materials, Equipment, Supplies, Tools

Bins, Screener

Purchased Bins, Tumblers
Tools to assemble or build
Wood
Screws, bolts, nails, etc.
Hardware cloth
Screening material

Supplies

- Gloves
 - Rubber for handling food scraps
 - Gardening for turning
- Tarps
- Signage & fliers
- Scissors (cut bags)
- Water-proof box for logs

Equipment/Tools

- Chopping & Shredding
 Trowels for tumblers
 Hatchet
 - Garden edger or spade shovel
 - ✓ Pruners
 - Mulch mower

Equipment/Tools

Turning & Material Moving Tools
 ✓ Pitch fork
 ✓ Shovel
 ✓ Bobcat/tractor
 Thermometer
 ✓ For hot composting

Tool Storage

Community Compost Site Design

Going with the flow...

Site Plan

Composing method Safety & fire emergency plan Security & vandalism concerns ✓ Monitoring techniques & record keeping Provisions for controlling odors Contingency plan

Site Layout

 Material receiving & mixing area ✓ Food scrap drop-off Carbon storage Active composting area Maybe same as mixing area Curing Finished compost

Image Cr.: NYC Master Composter Manual DSNY

Ludlow

Material Receiving/Mixing

- Intake: Sealable bins for collection
 Always cover food scraps with sawdust
 Carbon storage covered, enclosed
- Monitor for contaminants
- Log weight or volume

Ludlow Community Compost Site

Jora/Tumbler

WELCOME

Food scrap collection bins & carbon storage

Elm St. Community Compost Site

Jora - Active Composting Step 1

Active Composting Step 2

BIN 3

Bufferarea

Carbon storage & food scrap intake

Signage

Signage

Carbon Storage

Image Cr.: Philadelphia Orchard Project

Fort Community Compost Site

Receiving/Mixing

Feedstock Preparation
Size reduction: chop, shred
Mix: homogenous blend
Blend proper C:N ratios
Add moisture, if needed

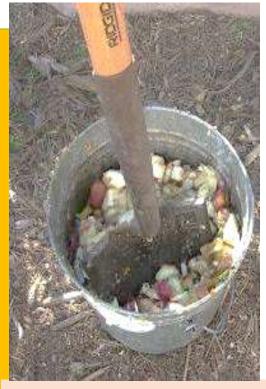
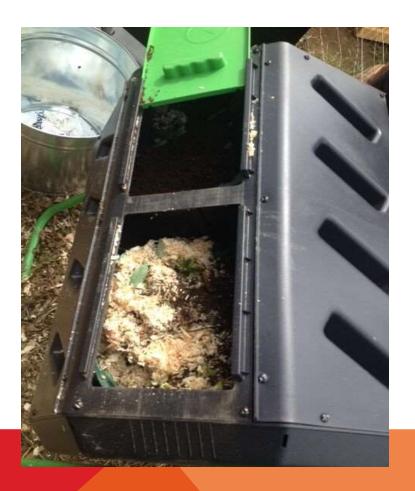



Image Cr.: Dreamkeeper Garden

Filling the Tumblers

Mixing in the Tumblers

Food Land Opportunity - Chicago

Mixing Food Scraps in Bins

Nola Greens – New Orleans

Mixing into Windrows

Active Composting

Fill tumblers, bins or add to piles Keep record of filling date for each system Fill one tumbler or bin completely prior to moving to next Incorporate fully into pile/windrow

Active Composting

- Monitor: temperature, moisture
- Rotate tumblers/turn compost to meet PFRP
 - Add water, as necessary
- Troubleshoot

Turning Active Compost

Hands in Heart Community Garden

Food Scrap Mixing/Active Composting

Curing, Screening, Finished

The Dirt Factory Community Composting Facility In University City

Ready for Curing

Ingredients are digested & bacterial activity declines

Compost pile heats up very little
V Even after turning or aerating the pile
Compost has a uniform, crumbly
appearance, earthy smell

Curing

Store in bin or pile Turn occasionally

Keep moist

Chapel Hill Community Compost

Image Cr.: Chapel Hill Spring Garden Tour

Harvesting & Screening

- Remove finished compost from curing area
- Screen/sift
- Send sample for testing
- Cover until ready for use
 - ✓ Signage "finished compost"

Finished Compost - Screening

Image Cr.: University of Florida/IFAS Extension Sarasota County

Image Cr.: EcoCity Farms

Site

- Year-round accessibility
- Access to a water source is necessary
- Shrubbery, fencing, or cover to block wind
 - Insulation for winter
- Sit bins/piles on ground, grass or vegetated area
 - Tumblers can be mounted

Site

- Buffer, swale, or filter around/behind piles
- Capture leachate
 Shady/partial sun is best
 Access to a water source

Set-Backs

Best Management Practices

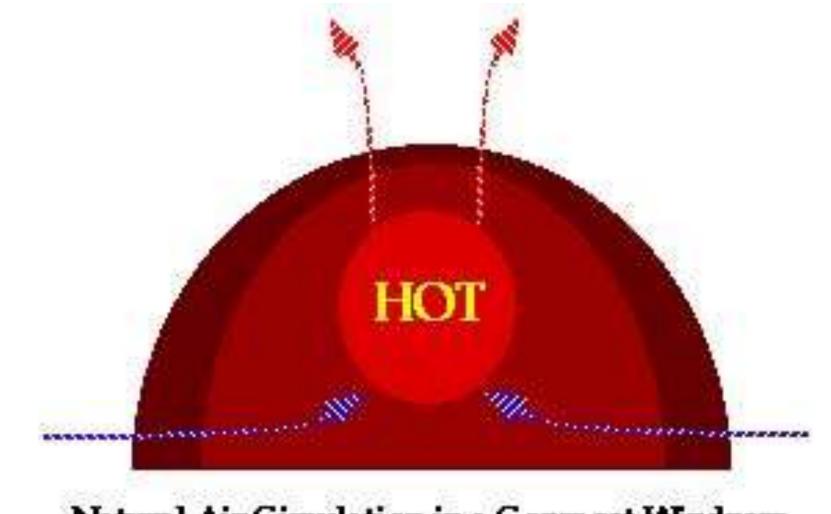
3 feet from side lot lines
10 feet from the front & back lot lines
Adequate distance from water sources
& water bodies

BMPS

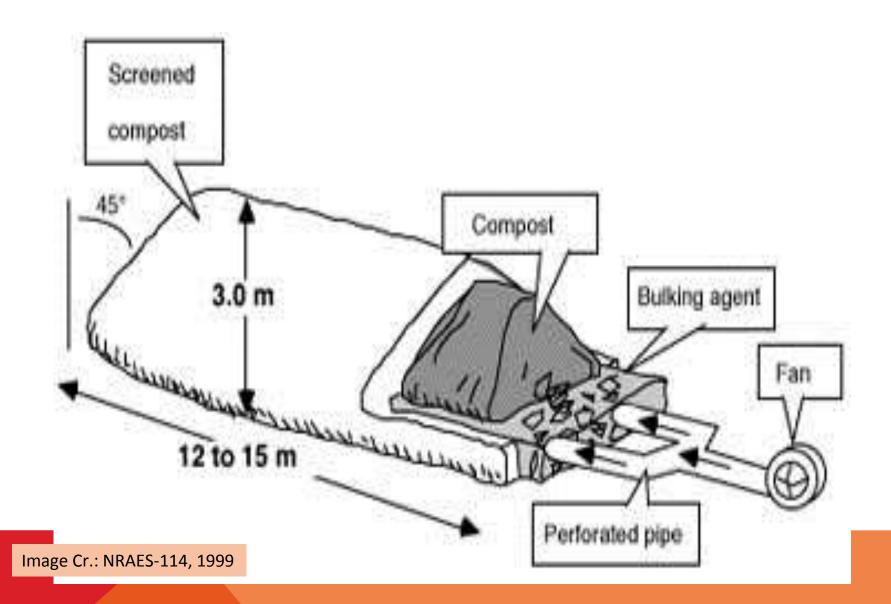
 Operated so as to minimize odors, prevent run-off, & not harbor rodents & pests

 Screened from view from public & adjacent neighbors using plants, trellis, or fencing

BMPs


A neat site appearance is important
✓ Don't let weeds grow on finished product
✓ Deal effectively with leachate or ponding
✓ Consider the view from the road

Aeration Techniques


- Tumblers: Close lid & rotate
- Piles, bins: Lift materials with pitch fork
 - ✓ Move materials from outside to inside
 - Or, place materials on perforated pipes or pipe through middle

Natural Air Circulation in a Compost Windrow

Image Cr.: Cornell University

Tractor with Bucket

Monitoring the Process

Observation Are the bins or piles steaming? Are materials looking different? \checkmark Is decomposition occurring? ✓ Materials looking like soil? \checkmark Is the pile uniformly composting?

Monitoring the Process, cont.

Compost feel
Does the squeeze test indicate that there is moisture in the material
Does it feels like a damp sponge & stick together?
Is the material too wet/slimy?

Monitoring the Process, cont.

- Oxygen—Smell is the best measure of properly aerated composting
- Unpleasant odor indicative of anaerobic conditions
 - V Pile needs to be turned

Monitoring the Process, cont.

Temperature monitoring

 Is the temperature rising
 appropriately for rapid compost?
 Does the temperature rise to 90°F
 Maintain for PFRP (131°F...ideal)

Winter Preparations

Dual-Chamber System

Image Cr.: Eartheasy.com

Insulated Bins

Image Cr. Pinterest

Insulated Bins, cont.

Image Crs.: Maine Organic Farmers & Gardeners Assoc.

Image Cr.: Pinterest

Curing

Necessary part of the compost process ✓ Should be cured for a minimum of 45 days Ensures compost is completely done & ready for use Cured compost becomes stable & mature Ammonia nitrogen converts to nitrate nitrogen Large woody particles continue to break down **Compost ingredients not recognizable** ✓ Wood chips may not entirely decompose & will require screening

Quality Assurance

 Observe, monitor, sample, analyze, test •Keep accurate compost records Track feedstock sources & materials Track turning frequency, temperature Track compost phases (Active, Curing) Odor issues & other problems Train the Team!

LOG BOOK

Date	Time	Composter Name(s)	Moisture Rating	Odor Rating	Temp 1	Temp 2	Turned (Y/N)	Other Actions Taken

LOG BOOK

Compost Monitoring Log											
Pile Identification: Pile Location:										Date Pile Built:	
Feedstocks and Mix Proportions:											
Date							MC	Odor	Visual	Notes (management, weather, vectors):	
	1	2	3	4	5	Temp		•	•	ł	
	1'/3'	1'/3'	1'/3'	1'/3'	1'/3'						

Compost Testing

- Maturity
- At a minimum—analyze the basic nutrient content—nitrogen, phosphorous, & potassium (N:P:K:)
- Bioassay testing

Your Compost Product is Ready to Use!

Tips

 Adequate amount of carbon Always cover food scraps with carbon & soil Sawdust is best Cover with lime to deter fruit flies & vermin (rodents, bears)

Tips

Line bottoms of compost bins with wire mesh /To detour vermin
Use vinegar to wash collection containers

If Critters Become An Issue

- Use Jora, Tumblers for full decomposition
- Eliminate any meat, sauces, cheese
- Discontinue adding food scraps, especially in early spring
- Build an enclosure around the compost area

Bins within Fencing

Down to Earth Community Garden

Who You Gonna Call?

- VCGN
- CAV
- NERC
- UVM Extension Master Composters
 Solid Waste Management Districts

Exercise: My compost stinks...

 Locate where the odors are coming from (collection area, active compost)

Determine the cause (based on location, moisture, etc.)

Take action

Special Appreciation

- CVSWMD for use of their facilities
- High Meadows Fund, the Grassroots Fund,
 participating Vermont Solid Waste Districts
- USDA Rural Utilities Program, which provided partial funding.

This material is based upon work supported under a grant by the Utilities Program, United States Department of Agriculture. Any opinions, findings, and conclusions or recommendations expressed in this material are solely the responsibility of the author and does not necessarily represent the official view of the Utilities Program.

